Pause & go: from the discovery of RNA polymerase pausing to its functional implications.
نویسندگان
چکیده
The synthesis of nascent RNA is a discontinuous process in which phases of productive elongation by RNA polymerase are interrupted by frequent pauses. Transcriptional pausing was first observed decades ago, but was long considered to be a special feature of transcription at certain genes. This view was challenged when studies using genome-wide approaches revealed that RNA polymerase II pauses at promoter-proximal regions in large sets of genes in Drosophila and mammalian cells. High-resolution genomic methods uncovered that pausing is not restricted to promoters, but occurs globally throughout gene-body regions, implying the existence of key-rate limiting steps in nascent RNA synthesis downstream of transcription initiation. Here, we outline the experimental breakthroughs that led to the discovery of pervasive transcriptional pausing, discuss its emerging roles and regulation, and highlight the importance of pausing in human development and disease.
منابع مشابه
Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences.
Escherichia coli RNA polymerase pauses immediately after transcription of certain sequences that can form stable secondary structures in the nascent RNA transcript; pausing appears to be essential for several types of bacterial transcription attenuation mechanisms. Because base changes that weaken the RNA secondary structures reduce the half-life of pausing by RNA polymerase, nascent transcript...
متن کاملStructural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing
A transcription initiation factor, the σ(70) subunit of Escherichia coli RNA polymerase (RNAP) induces transcription pausing through the binding to a promoter-like pause-inducing sequence in the DNA template during transcription elongation. Here, we investigated the mechanism of σ-dependent pausing using reconstituted transcription elongation complexes which allowed highly efficient and precise...
متن کاملRNA polymerase-induced remodelling of NusA produces a pause enhancement complex
Pausing during transcription elongation is a fundamental activity in all kingdoms of life. In bacteria, the essential protein NusA modulates transcriptional pausing, but its mechanism of action has remained enigmatic. By combining structural and functional studies we show that a helical rearrangement induced in NusA upon interaction with RNA polymerase is the key to its modulatory function. Thi...
متن کاملDiscontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex
A central enigma of transcriptional regulation is how the normally efficient transcription elongation complex stops at pause and termination signals. One possibility, raised by the discovery that RNA polymerase sometimes contracts its DNA footprint, is that discontinuous movements contribute to recognizing these signals. We report that E. coli RNA polymerase responds to sequences immediately do...
متن کاملRNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
Sequence-specific pausing by RNA polymerase (RNAP) during transcription plays crucial and diverse roles in gene expression. In bacteria, RNA structures are thought to fold within the RNA exit channel of the RNAP and can increase pause lifetimes significantly. The biophysical mechanism of pausing is uncertain. We used single-particle cryo-EM to determine structures of paused complexes, including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in cell biology
دوره 46 شماره
صفحات -
تاریخ انتشار 2017